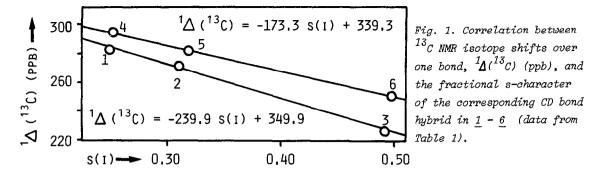
Tetrahedron Letters, Vol. 26, No. 12, op 1491-1492, 1985 Printed in Great Britain

ON THE HYBRIDIZATION-DEPENDENCE OF DEUTERIUM-INDUCED ¹³C NMR ISOTOPE SHIFTS OVER ONE BOND: DATA FOR ETHANE, ETHYLENE, AND ACETYLENE*

Joachim R. Wesener, Detlef Moskau, and Harald Günther* Fachbereich 8 der Universität, Organische Chemie II, D-5900 Siegen, Germany

Abstract: One-bond ${}^{2}H/{}^{1}H$ isotope effects on ${}^{13}C$ chemical shifts in ethane, ethylene, and acetylene correlate linearly with the fractional s-character of the corresponding CD bond hybrid.


There are a number of reports in the literature on the s-character dependence of 2 H/¹H isotope effects on ¹³C chemical shifts, $^{1}\Delta(^{13}C)$, ¹⁾ and a decrease of $^{1}\Delta(^{13}C)$ with increasing s-character of the CD bond hybrid has been calculated²⁾ and measured.³⁾ However, conclusive experimental results from a study that includes aliphatic, olefinic as well as acetylenic CD bonds have not yet been obtained. Earlier attempts failed because of the lower experimental accuracy available at that time⁴) or the neglect of substituent effects on $\frac{1}{\Delta}(1^{3}C)$ data.⁵)

We now observed an excellent linear correlation between $\frac{1}{\Delta}(^{13}C)$ and the fractional s-character, s(i), of the corresponding CD bond hybrid for the two series of compounds 1 - 3 and 4 - 6, respectively (Table 1). The mono-deuterated species were prepared by standard techniques as 3:1 mixtures with isotope-free material.⁶⁾ NMR isotope effects were measured at 100.61 MHz under ¹H broad-band decoupling and ²H decoupling where necessary.⁷⁾ The fractional s-character was calculated from the observed one-bond ¹³C,²H coupling constants by the modified Muller-Pritchard relation⁸⁾ $s(i) = (\gamma_H / \gamma_D) \times {}^1J({}^{13}C, {}^{2}H)/500$, with $\gamma_H / \gamma_D = 6.5144.9$ A graphical representation of the results (Table 1) is given in Fig. 1.¹⁰

Our data clearly demonstrate that a linear correlation between $\frac{1}{2}(^{13}C)$ and the fractional s-character of the corresponding CD bond hybrid exists for compounds

tional s-Character of $\underline{1} - \underline{6}$						
	н ₃ с-сн ₂ d	H ₂ C=CHD	нс≡ср	с ₆ н ₅ -сн ₂ -сн ₂ D	C ₆ H ₅ C=C ^H _D	C ₆ H ₅ -C≡CD
	1	2	3	4	5	6
$^{1}\Delta(^{13}c)$ $^{1}_{J}(^{13}c,^{2}_{H})$		273.6 23.95		296.0 19.40	283.2 24.55	252.7 38.45
s(i)	0.250	0.312	0.495	0.253	0.320	0.501

One-bond ${}^{2}\text{H}/{}^{1}\text{H}$ ${}^{13}\text{C}$ NMR Isotope Shifts (ppb, exp. error + 0.5), Table 1. 13 2 Counting Constants (Hz even error + 0.03) and Calculated Frac-

of closely related structure. The different slopes and intercepts obtained for 1 - 3 and 4 - 6, respectively, (Fig. 1) are - at least in part - a consequence of the different temperatures, solvents, and concentrations used,¹¹ but the effect of phenyl-substitution in 4 - 6 is certainly a major factor. The strong influence that structural variations have on $1\Delta(1^{3}C)$ is most convincingly demonstrated by the fact that methane $(1\Delta(1^{3}C) = 187.0 \text{ ppb}^{12})$ does not fit into the correlation since it lacks an α -carbon substituent.¹³ Empirical correlations like the above equations are thus less general than the Muller-Pritchard relation for $1J(1^{3}C, 1^{H})$ coupling constants.

Acknowledgements. We are indebted to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for generous support.

References and Notes:

- ⁺⁾ Dedicated to Professor Dr. W. Lüttke on the occasion of his 65th birthday.
- 1) see for example A.A.Borisenko, N.M.Sergeyev, and Y.A.Ustynyuk, Mol. Phys. 22, 715 (1971).
- 2) Kh.Orazberdiev, V.M.Mamayev, and N.M.Sergeyev, Proc. 20th Congress Ampere, Springer, Berlin 1979, p.495.
- 3) R.Aydin and H.Günther, J.Am.Chem.Soc. 103, 1301 (1981).
- 4) D.Doddrell and I.Burfitt, Aust.J.Chem. 25, 2239 (1972).
- 5) Y.N.Luzikov and N.M.Sergeyev, J.Magn.Reson. 60, 177 (1984).
- 6) 1: from ethyl magnesium bromide with H₂O/D₂O (1:3); 2: from vinyl magnesium bromide as before; 3: from CaC₂ by hydrolysis as before, resulting in a product mixture of C₂H₂/C₂HD/C₂D₂ (1:2:2); 4: hydrolysis of B-phenyl-methyl magnesium bromide as before; 5: J.P.Quintard and M.Pereyre, J.Label.Compounds 14, 653 (1978); 6: from phenylacetylene by reaction with n-butyllithium and subsequent hydrolysis as before.
- 7) BRUKER WH-400 FT-NMR Spectrometer with ASPECT 2000 data system.
- 8) N.Muller and D.E.Pritchard, J.Chem. Phys. 31, 768, 1471 (1959).
- 9) P.Diehl and T.Leipert, Helv.Chim.Acta 47, 545 (1964).
- 10) The use of the empirical constant 500 in the Muller-Pritchard relation neglects any primary isotope effects on ${}^{1}J({}^{13}C, {}^{3}H)$. These effects are, however, small (<1%) (cf. ref. 5 and footnote 16 in ref. 3) and therefore well within the error limits of the empirical constant.
- 11) 1 and 2 were measured at 173 K in CD₂Cl₂/CS₂ (ca.20 Vol%); 3 at 213 K in acetone-d₆ (ca. 50 Vol%); <u>4</u> <u>6</u> at 310 K in CDCl₃ (1 M).
- 12) M.Alei, Jr., and W.E. Wageman, J. Chem. Phys. 68, 783 (1978).
- 13) We found that $\Delta^{(13}C)$ in polymethyl- and polyphenyl methanes changes systematically with the number of methyl and phenyl groups, respectively (J.R.Wesener, Diploma thesis, Siegen 1982).

(Received in Germany 11 January 1985)